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Abstract 
The paper considers the problem of evaluating the state of a generalized computational 

experiment in the context of a general problem of creating methods for adaptive planning and 
control of a generalized computational experiment in mathematical modeling of real physical 
processes. A generalized computational experiment implies multiple solution of the 
numerical simulation problem for various sets of values of defining model parameters. As a 
method for assessing a generalized computational experiment state, it is proposed to visualize 
a set of experimental data specifying this state then followed by analysis of the resulting 
visual image. An approach to visualization of a generalized computational experiment state is 
proposed based on constructing a visual map. The concept of a visual map of a generalized 
computational experiment is introduced, and several methods of its construction are 
proposed. Examples of application of those methods are considered when assessing the 
accuracy of numerical models of the OpenFOAM software platform for a three-dimensional 
problem of inviscid flow around a cone.  

Keywords: generalized computational experiment, generalized computational 
experiment state, multidimensional data, visualization, visual analytics, visual map, 
approximation, problem of flow around a cone, OpenFOAM.  

 

1. Introduction 
In the tasks of mathematical modeling of physical processes a computational experiment 

plays an important role. In the general case it consists in a series of calculations with varying 
the defining parameters of the model. In this case, the task of the experiment is often to 
simultaneously investigate the influence of several parameters on the characteristics of 
modeling object of interest, including investigating their joint influence in various 
combinations of variation ranges. With the development of computer technology, it became 
possible to construct a so-called generalized computational experiment (GCE) [1], which 
assumes parallel calculation of the same problem with different sets of parameter values in 
multitask mode. Currently, there are examples of successful construction and application of a 
GCE in solving problems of computational fluid dynamics [1-2], gas dynamics [3-4], power 
plant design automation [5]. 

From the point of view of representing the results, a generalized computational 
experiment is characterized by a multidimensional array the elements of which specify the 
distribution of values of simulation output parameters for a given set of input parameters. In 
this case, some generalized indicators often act as output parameters, which are the results of 
processing primary experimental data, contain information about general patterns and 
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relationships inherent in the object of modeling, and are used for interpretation, search for 
patterns, formation and testing of hypotheses. Examples of generalized indicators are the 
principal components in dimension reduction problems [6], L1 and L2 error vector norms in 
problems of estimating the accuracy of various numerical methods with varying the key 
simulation parameters [3-4], etc. 

It is obvious that both conducting a GCE and processing and interpreting its results are 
very resource-intensive tasks. Moreover, it is not possible to conduct an experiment with all 
allowable combinations of models and simulation parameters. Therefore, it is necessary to 
resort to GCE planning choosing a specific scenario for its implementation. At the same time, 
it is advisable to build a GCE on the basis of not a static, predetermined, but a dynamic, 
adaptively changing plan. The principle of constructing such a plan can be as follows: based 
on the results of a series of experiments for a certain set of values of input parameters and 
processing of its results in conjunction with the results of previous series of experiments, the 
current GCE state is recorded. This state must be evaluated and analyzed in order to 
determine or adjust the plan for the subsequent series of experiments. To do this, it is 
necessary to establish dependencies of the output simulation parameters on the input ones 
and on this basis to select the value ranges of the input parameters for which more detailed 
studies are required with new or refined sets of parameters. Such situations may arise, for 
example, when new patterns are discovered that require confirmation and refinement, or if 
the results of some already conducted experiments do not correspond to the expected 
patterns and thus require rechecking. 

As a method for evaluating a GCE state, it is proposed to visualize the experimental data 
that define it, followed by analysis of the resulting visual image. The approach based on 
visualization of multidimensional data has proven itself well in the tasks of exploratory 
analysis and hypothesis formation [7]. Visual analysis of a GCE state helps to visually and 
quickly enough detect and highlight problematic or promising value ranges of input 
parameters that are subject to more detailed study. 

A number of papers are devoted to the study of visualization problems in a generalized 
computational experiment, among which, for example, [2, 3, 5] can be noted. At the same 
time, these studies are mainly aimed at application of visualization methods for the analysis 
and interpretation of experimental results. Visualization methods that could be used to 
evaluate a GCE state in order to clarify the scenario for its implementation are currently out 
of consideration. This paper attempts to fill this gap. The concept of a visual map of a 
generalized computational experiment is introduced, which is understood as a set of visual 
images characterizing the state of GCE and arranged in accordance with certain rules. Several 
methods are proposed for constructing a visual map of the GCE, the application of which is 
considered by the example of evaluating the accuracy of numerical models of the OpenFOAM 
software platform [8] for a three-dimensional problem of inviscid flow around a cone. 

2. The Concept of Visual Map of Generalized 
Computational Experiment 

Earlier in the article [9], the authors considered the problem of adaptive planning and 
control of a generalized computational experiment and proposed the general structure of the 
GCE control model. It was shown that the key concept for this model is the concept of the 
state of a generalized computational experiment. The state of the GCE is determined by a set 
of computational experiments already carried out and is set by a multidimensional array of 
experimental data obtained with the current partition of the space of defining parameters, a 
set of generalized indicators obtained as a result of processing this array, as well as a set of 
patterns identified on the basis of analysis and interpretation of these indicators. 

With regard to the problem of constructing a visual image of the GCE, the following 
formal representation of the state of the GCE can be proposed, which can be considered as a 
refinement and concretization of the formal representation proposed in [9] in the context of 
the visualization problem. 



Let us assume that within the framework of a GCE on a set of models M = {m1, m2, …, 
mNm), where Nm is the number of models, Nk computational experiments were carried out 
within which the input simulation parameters P = {p1, p2, …, pNp} were varied, where Np is 
the number of input simulation parameters. As a result of the computational experiments, the 
output parameters S = {s1, s2, …, sNs} were determined, where Ns is the number of output 
parameters. As noted above, the output parameters can be generalized indicators, which are 
the results of processing the primary experimental data.  Each computational experiment k 
was carried out for a fixed set of input simulation parameters Pk = {pk,1, pk,2, …, pk,Nk}. In this 
case, situations are possible when, for a fixed set of simulation parameters, computational 
experiments were not performed on all models. The results of the performed computational 
experiments form a set R = {rk,m,v}, where k is the number of the computational experiment 
(1 ≤ k ≤ Nk ), m is the number of the model (1 ≤ m ≤ Nm), v is the number of the output 
parameter (1 ≤ v ≤ Ns). 

Thus, the state of the GCE is determined by a given partition of the space of values of the 
input parameters of modeling from the set P, the set of values of the output parameters 
included in the set S, as well as the results of a series of computational experiments that form 
the set R.  

The visual image of the state of the GCE can be presented in the form of a set of visual 
elements on a plane or in space, linked in a certain way with each other. Each visual element 
reflects a subset of the set R of GCE results and is characterized by a set of visual features. In 
this work, we will restrict ourselves to considering the following visual signs: 

• coordinates on the plane (x, y) or in space (x, y, z); 

• Shape; 

• Size; 

• Color. 
At the same time, we note that in addition to the listed features, it is possible to use 

others, such as color saturation, orientation, texture, etc. 
With a large number of modeling parameters, a separate visual image of the state of the 

GCE is able to reflect only a certain part of the set R of its results. Thus, to visualize the state 
of the GCE, it is necessary to construct a set of interconnected visual images. We will call such 
set a visual map of a generalized computational experiment. 

To construct a visual map of the GCE, you first need to prepare the data, which consists in 
transforming the initial representation of the state of the GCE to a set of dependencies of the 
following type. 

For the two-dimensional case: 
F (x) = < y, Shape, Size, Color >, 

or F (x, y) = < Shape, Size, Color > 
For the three-dimensional case: 

F (x) = < y, z, Shape, Size, Color >, 
or F (x, y) = < z, Shape, Size, Color >, 
or F (x, y, z) = < Shape, Size, Color >. 

In this case, the arguments of the function F are determined primarily by the input 
parameters of the modeling, and the sets of its values are primarily associated with the output 
parameters, as well as with the characteristics of the experimental results for which the visual 
image is constructed. Some methods for such a transformation are proposed in this work and 
will be discussed in the next section. 

The resulting set of visual images can be subjected to preliminary analysis using well-
known methods and visual analytics tools. This approach assumes that each visual image is 
analyzed separately, with subsequent comparison and integration of the results of such 
analysis. We will call this approach interactive. 

To obtain a holistic visual presentation, a variety of visual images are converted into a 
visual map, which in particular involves the search for a suitable transformation method, for 
example, in the form of a certain set of rules for layout visual images. The approach to the 
visual analysis of the state of GCE based on the construction of a visual map will be called a 
complex one. 



3. Methods of Data Preparation for Constructing a Visual 
Map of Generalized Computational Experiment 

Let us visualize the state of the GCE using a series of two-dimensional approximating 
curves of the results of computational experiments. Considering the fact that there can be 
several input simulation parameters, let us apply the following algorithm (Fig. 1) to construct 
two-dimensional approximating curves for one model m. 

1. Fix sequentially each input parameter pi. Values of this parameter determine the 
values of x pairs (x; y) for which we will further carry out approximation. 

2. Determine set T = {td} of all possible combinations of the remaining input parameters 
pj (p ≠ pi), where 1 ≤ d ≤ Nti, Nti is the number of possible combinations of the remaining 
input parameters for a fixed parameter pi. 

3. For each such combination td, obtain Nsd dependences of the output parameters sv on 
the parameter pi (it is assumed that not all combinations of input values could be obtained for 
all output parameters). 

4. Carry out construction of the functional dependence using approximating functions. 
To do this, first determine the number – Nfi,d,v and the form of possible approximating 

functions 𝐹𝑖,𝑑,𝑣 = {𝑓𝑖,𝑑,𝑣,1, 𝑓𝑖,𝑑,𝑣,2, … , 𝑓𝑖,𝑑,𝑣,𝑁𝑓𝑖,𝑑,𝑣
} for each resulting parameter sv, a combination 

of the input parameters d and a fixed input parameter i. The values of the resulting 
parameters sv (the corresponding rk,m,v are selected from the set R) specify the values of y in 
pairs (x; y) for which we will carry out the approximation. 

5. For each approximating function fi,d,v,j for the resulting parameter sv and each 
combination td of input parameters, a graph of functional dependence on the parameter pi 
construct and approximation accuracy is determined ei,d,v,j. 

6. Visually compare of graph shapes is carried out for a fixed parameter pi for different 
approximating functions, and deviations and patterns are revealed. Among other things, 
shapes of the curves obtained for different resulting parameters are compared. 

7. Choose the following fixed input parameter: i = i + 1 and go to step 2. 
8. If all the input parameters are exhausted, then the algorithm is completed. 
The presented algorithm is repeated for each model. 
The method based on application of this algorithm makes it possible to visually identify 

deviations in the results of experiments and determine patterns; however, it does not reflect a 
GCE state as a whole, since it forms not a single visual image but a series of visual images. In 
other words, this method implements an interactive approach to visual analysis of the GCE 
state and can be considered as an intermediate stage in the process of constructing a visual 
GCE map. 

For the transition from a series of visual images to a single visual map, it is proposed to 
use the following method. The obtained characteristics of approximation accuracy ei,t,v,j  are 
summarized in tables: for each pair of a fixed input parameter i and an output parameter v, 
we obtain one table, the columns of which are approximating functions fj,v, and the rows are 
specific values of the remaining parameters. The cells of this table are the corresponding 
values of approximation accuracy – ei,t,v,j. For each row of these tables, let us define 
characterizing values by the following methods: 

1. Minimum accuracy of approximation (one parameter). 
2. Maximum accuracy of approximation (one parameter). 
3. Average accuracy of approximation and root-mean-square deviation of different 

methods of approximation from the mean (two parameters). 
 



 
Fig. 1. Flowchart of visualization algorithm for a GCE state using a series of  

approximating graphs 
 
Visualization of the obtained characteristics will be carried out using two-dimensional dot 

plots. On this graph, for each resulting parameter v, the corresponding points will be of the 
same color. For different resulting parameters v, the colors will be different. We will also 
visualize different input parameters i using different colors (different types of markers can be 
also used). The ordinal number of the table rows will be used as the value of the point along 
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the abscissa axis in a two-dimensional visualization. The characterizing values will be used as 
values along the ordinate axis. When using the 3rd method for determining the characteristic 
values, the average accuracy will determine the value along the ordinate axis, and the root-
mean-square deviation will determine the size of the point. 

As a result, a set of dot plots will again be obtained, but their number is already 
significantly less than in the previous approach, and various layout methods can be applied to 
this set of visual images, such as overlay, horizontal and vertical alignment, etc. At the same 
time, to give the resulting image more visual expressiveness, you can additionally use various 
types of transformation of coordinate grids – stretching, rotation, mirroring. 

Thus, on one two-dimensional dot plot, we can reflect a GCE state for one specific model. 
Analyzing the relative position (and the size of the points for the third method of determining 
the characteristic values) of the points, it is possible to visually determine for which input 
parameters there are problems with the approximation accuracy, and as a consequence, 
errors in carrying out computational experiments are possible, and for which it is not yet 
possible to determine the best approximation methods and, consequently, determine the 
value ranges of the input parameters for which it makes sense to carry out additional 
computational experiments in intermediate values. 

4. Experiment Description 
Let us consider application of the proposed methods of constructing a visual map for a 

GCE carried out within evaluating the accuracy of solvers of the OpenFOAM platform (in 
OpenFOAM terminology, solvers are software modules in which various numerical models of 
mechanics of continua are implemented [8]) for the three-dimensional problem of inviscid 
flow around a cone [4, 10] (Fig. 2). Solvers rhoCentralFoam, pisoCentralFoam, sonicFoam 
will be considered as models M. 

 

 
Fig. 2. The density distribution and the streamline on the cone surface  

in a supersonic flow angle of attack 
 



The simulation input parameters (P) are Mach number (Ma), cone half-angle (Betta, in 
degrees), and angle of attack (Angle, in degrees). The output parameters (S) of computational 
experiments are: the results of calculating deviation norms L1 and L2 of the numerical 
calculation from the analytical solution. 

As approximating functions, we will use the following: 

• linear (y = ax + b); 
• exponential (y = aebx); 

• logarithmic (y = aln(x) + b; 

• quadratic (y = ax2 + bx + c). 
As the approximation accuracy, we will use the value of the approximation reliability R2 

[11]. 
As a result of the approximation of the obtained data, 178 approximating functions were 

constructed for each solver, considering the fact that some types of approximations in specific 
cases could not be carried out. For example, for the quadratic approximation, in the case of 
only two points, the graph was expressed in a line and therefore was not taken into account. 
Also, for the logarithmic function, it was impossible to determine approximating functions for 
the cases when the value of the parameter x could be equal to 0. The visualization results of 
the obtained approximating functions are partially shown in Fig. 3-5. For convenience, one 
graph displays the curves for all output parameters (norms L1 and L2). 

 

 
Fig. 3. An example of visualization of approximating functions for rhoCentralFoam solver 

with a fixed input parameter – angle of attack 
 



 
Fig. 4. An example of visualization of approximating functions for psioCentralFoam solver 

with a fixed input parameter – cone half-angle 
 

 
Fig. 5. An example of visualization of approximating functions for sonicFoam solver  

with a fixed input parameter – Mach number 
 
After constructing a series of diagrams and determining the approximation accuracy, 

their mean values and root-mean-square deviations were calculated (Tables 1-9). Bubble 
charts were used for visual map constructing, herewith a different bubble color means 
belonging to different data series (a combination of a fixed input parameter and an output 
parameter), and the size of a point (bubble) characterizes the root-mean-square deviation of 
the approximation accuracy by different types of curves. Fig. 6-8 show thus obtained visual 
map of GCE state for different solvers. The map consists of three bubble charts, each one of 
which summarizes the results of evaluating the accuracy of the corresponding solver by 
representing them as a single visual image.  
 



Table 1. Characterizing values of approximation for rhoCentralFoam solver for 
Ma fixed parameter 

Input 
parameters 

combination 
values 

Comb. number 

L1 L2 

Min Max Avg RMSD Min Max Avg RMSD 

Betta Angle 

10 0 1 0,94309 1 0,97756 0,00177 0,96078 1 0,97931 0,00078 

10 5 2 0,94501 1 0,97771 0,00164 0,96456 1 0,97964 0,00067 

15 0 3 0,95181 1 0,98145 0,00130 0,96382 1 0,98245 0,00066 

15 5 4 0,95938 1 0,98295 0,00096 0,96914 1 0,98295 0,00049 

15 10 5 0,96687 1 0,98423 0,00078 0,97589 1 0,98439 0,00037 

20 0 6 0,97009 1 0,98661 0,00069 0,97306 1 0,98468 0,00038 

20 5 7 0,97103 1 0,98600 0,00065 0,97530 1 0,98478 0,00035 

20 10 8 0,95286 1 0,98151 0,00124 0,96410 1 0,98312 0,00065 

 
Table 2. Characterizing values of approximation for rhoCentralFoam solver for 
Betta fixed parameter 

Input 
parameters 

combination 
values 

Comb. number 

L1 L2 

Min Max Avg RMSD Min Max Avg RMSD 

Ma Angle 

3 0 1 0,95043 1 0,98336 0,00161 0,95677 1 0,98652 0,00126 

3 5 2 0,95835 1 0,98699 0,00117 0,96930 1 0,99076 0,00063 

3 10 3 1 1 1 0 1 1 1 0 

5 0 4 0,97991 1 0,99376 0,00026 0,98595 1 0,99512 0,00012 

5 5 5 0,96365 1 0,98749 0,00087 0,98076 1 0,99376 0,00024 

5 10 6 1 1 1 0 1 1 1 0 

7 0 7 0,94123 1 0,97376 0,00216 0,97109 1 0,98996 0,00056 

7 5 8 0,95094 1 0,97905 0,00154 0,97709 1 0,99178 0,00035 

7 10 9 1 1 1 0 1 1 1 0 

 
Table 3. Characterizing values of approximation for rhoCentralFoam solver for 
Angle fixed parameter 

Input 
parameters 

combination 
values 

Comb. number 

L1 L2 

Min Max Avg RMSD Min Max Avg RMSD 

Ma Betta 

3 10 1 1 1 1 0 1 1 1 0 

3 15 2 0,85490 1 0,90400 0,01383 0,93488 1 0,96118 0,00236 

3 20 3 0,18749 1 0,46021 0,43708 0,98542 1 0,99207 0,00011 

5 10 4 1 1 1 0 1 1 1 0 

5 15 5 0,97911 1 0,98748 0,00024 0,97777 1 0,98816 0,00025 

5 20 6 0,05399 1 0,36938 0,59651 0,92132 1 0,95017 0,00376 

7 10 7 1 1 1 0 1 1 1 0 

7 15 8 0,96513 1 0,97780 0,00074 0,99184 1 0,99594 0,00003 

7 20 9 0,91134 1 0,94293 0,00490 0,91572 1 0,94759 0,00418 

 
 
 
 



Table 4. Characterizing values of approximation for pisoCentralFoam solver for 
Ma fixed parameter 

Input 
parameters 

combination 
values 

Comb. number 

L1 L2 

Min Max Avg RMSD Min Max Avg RMSD 

Betta Angle 

10 0 1 0,96572 1 0,98198 0,00102 0,96733 1 0,98194 0,00055 

10 5 2 0,95111 1 0,97941 0,00132 0,97196 1 0,98231 0,00047 

15 0 3 0,96671 1 0,98576 0,00069 0,96975 1 0,98576 0,00046 

15 5 4 0,97213 1 0,98645 0,00066 0,97739 1 0,98607 0,00030 

15 10 5 0,97034 1 0,98600 0,00071 0,97381 1 0,98663 0,00034 

20 0 6 0,97305 1 0,98788 0,00052 0,98156 1 0,98771 0,00023 

20 5 7 0,97348 1 0,98835 0,00054 0,97972 1 0,98775 0,00023 

20 10 8 0,96188 1 0,98500 0,00084 0,96349 1 0,98492 0,00073 

 
Table 5. Characterizing values of approximation for pisoCentralFoam solver for 
Betta fixed parameter 

Input 
parameters 

combination 
values 

Comb. number 

L1 L2 

Min Max Avg RMSD Min Max Avg RMSD 

Ma Angle 

3 0 1 0,86753 1 0,93004 0,01010 0,90982 1 0,96023 0,00477 

3 5 2 0,95472 1 0,98539 0,00136 0,96162 1 0,98745 0,00098 

3 10 3 1 1 1 0 1 1 1 0 

5 0 4 0,82152 1 0,88742 0,02032 0,97279 1 0,98998 0,00050 

5 5 5 0,93841 1 0,97293 0,00235 0,97770 1 0,99217 0,00033 

5 10 6 1 1 1 0 1 1 1 0 

7 0 7 0,61822 1 0,73936 0,09566 0,94428 1 0,97283 0,00200 

7 5 8 0,94427 1 0,97283 0,00200 0,97481 1 0,98972 0,00045 

7 10 9 1 1 1 0 1 1 1 0 

 
Table 6. Characterizing values of approximation for pisoCentralFoam solver for 
Angle fixed parameter 

Input 
parameters 

combination 
values 

Comb. number 

L1 L2 

Min Max Avg RMSD Min Max Avg RMSD 

Ma Betta 

3 10 1 1 1 1 0 1 1 1 0 

3 15 2 0,91702 1 0,94593 0,00439 0,87596 1 0,92025 0,00958 

3 20 3 0,10339 1 0,40438 0,53217 0,99539 1 0,99778 0,00001 

5 10 4 1 1 1 0 1 1 1 0 

5 15 5 0,98832 1 0,99256 0,00008 0,97153 1 0,98409 0,00042 

5 20 6 0,44460 1 0,63462 0,20036 0,98909 1 0,99411 0,00006 

7 10 7 1 1 1 0 1 1 1 0 

7 15 8 0,59444 1 0,73036 0,10906 0,98688 1 0,99292 0,00009 

7 20 9 0,95681 1 0,97358 0,00107 0,97079 1 0,98366 0,00044 

 
 
 
 



Table 7. Characterizing values of approximation for sonicFoam solver for Ma 
fixed parameter 

Input 
parameters 

combination 
values 

Comb. number 

L1 L2 

Min Max Avg RMSD Min Max Avg RMSD 

Betta Angle 

10 0 1 0,93393 1 0,98130 0,00303 0,94069 1 0,98329 0,00244 

10 5 2 0,83358 1 0,92504 0,01578 0,94642 1 0,98478 0,00197 

15 0 3 0,94378 1 0,98416 0,00218 0,95478 1 0,98693 0,00139 

15 5 4 0,94249 1 0,98381 0,00229 0,95059 1 0,98562 0,00166 

15 10 5 0,95377 1 0,98653 0,00145 0,95639 1 0,98714 0,00128 

20 0 6 0,94410 1 0,98423 0,00216 0,95462 1 0,98681 0,00140 

20 5 7 0,95508 1 0,98701 0,00137 0,96682 1 0,98993 0,00072 

20 10 8 0,94389 1 0,98367 0,00216 0,93180 1 0,97619 0,00303 

 
Table 8. Characterizing values of approximation for sonicFoam solver for Betta 
fixed parameter 

Input 
parameters 

combination 
values 

Comb. number 

L1 L2 

Min Max Avg RMSD Min Max Avg RMSD 

Ma Angle 

3 0 1 0,95646 1 0,98717 0,00130 0,95243 1 0,98572 0,00154 

3 5 2 0,95830 1 0,98732 0,00118 0,95756 1 0,98654 0,00120 

3 10 3 1 1 1 0 1 1 1 0 

5 0 4 0,97308 1 0,99112 0,00048 0,97513 1 0,99194 0,00041 

5 5 5 0,77291 1 0,86953 0,02695 0,95457 1 0,98051 0,00134 

5 10 6 1 1 1 0 1 1 1 0 

7 0 7 0,97176 1 0,98968 0,00054 0,97402 1 0,99071 0,00045 

7 5 8 0,97764 1 0,99180 0,00034 0,98942 1 0,99606 0,00007 

7 10 9 1 1 1 0 1 1 1 0 

 
Table 9. Characterizing values of approximation for sonicFoam solver for Angle 
fixed parameter 

Input 
parameters 

combination 
values 

Comb. number 

L1 L2 

Min Max Avg RMSD Min Max Avg RMSD 

Ma Betta 

3 10 1 1 1 1 0 1 1 1 0 

3 15 2 0,96358 1 0,98025 0,00068 0,99746 1 0,99906 0 

3 20 3 0,89731 1 0,93560 0,00630 0,99195 1 0,99672 0,00004 

5 10 4 1 1 1 0 1 1 1 0 

5 15 5 0,96283 1 0,97789 0,00077 0,99861 1 0,99953 0 

5 20 6 0,97636 1 0,98561 0,00032 0,95714 1 0,97520 0,00099 

7 10 7 1 1 1 0 1 1 1 0 

7 15 8 0,99736 1 0,99886 0 0,99584 1 0,99829 0,00001 

7 20 9 0,66821 1 0,77960 0,07287 0,99866 1 0,99946 0 

 
When constructing visual maps in Fig. 6-8, the overlay layout method was used. This 

made it possible to reflect several different combinations of the values of the input and output 
parameters in one diagram. If you need to focus on each combination separately, then you 
can use graph alignment as a layout method (table layout: left column – L1 norm, right 



column – L2 norm, rows – fixed input parameter). As a result, we get a visual map consisting 
of three sets of graphs shown in Fig. 9-11. 

 

 
Fig. 6. Visual map of the GCE for rhoCentralFoam solver (overlay method) 

 

 
Fig. 7. Visual map of the GCE for pisoCentralFoam solver (overlay method) 

 



 
Fig. 8. Visual map of the GCE for sonicFoam solver (overlay method) 

 

 
Fig. 9. Visual map of the GCE for rhoCentralFoam solver (table layout) 

 



 
Fig. 10. Visual map of the GCE for pisoCentralFoam solver (table layout) 

 

 
Fig. 11. Visual map of the GCE for sonicFoam solver (table layout) 

 



5. Discussion of Experimental Results 
Analyzing the obtained visual images, it can be noted that, in most cases, the curve shapes 

for norms L1 and L2 are similar for a fixed value of the input parameter and the 
corresponding combinations of the remaining input parameters. However, in some cases 
deviations are observed. In particular, for sonicFoam solver (Fig. 5) with a fixed input 
parameter – Mach number and cone half-angle – 10° and angle of attack – 5°, a significantly 
greater curvature of the approximating curve for the L1 norm is observed, as well as the 
osculation of curves for the L1 and L2 norms. Similar anomalies were also observed for the 
same solver and the L1 norm in two other cases: 

1. Fixed input parameter – angle of attack, Mach number – 5, half-angle – 10°. 
2. Fixed input parameter – half-angle, Mach number – 5, and angle of attack – 5°. 
These anomalies suggest that at Mach number of 5, half-angle of 10°, and angle of attack 

of 5° for sonicFoam solver, an error could have been made in the computational experiment 
or in the calculation of the L1 norm. Further clarification of this fact by the authors of the 
computational experiment confirmed the presence of a technical error related to tabulating 
the results of the computational experiments for the given combination of input parameters – 
the corresponding value of the L2 norm fell into the table cell for the L1 norm by mistake. 

Analyzing the visual map for solvers (Fig. 6-8), it can also be noticed that for: 

• 2 cases for rhoCentralFoam the applied approximation methods give rather different 
results in terms of flow (2 large bubbles) and all of them are for the L1 norm and the angle of 
attack as fixed parameter, which may mean that some approximation methods are not 
suitable in this case. 

• 4 cases for pisoCentralFoam the applied approximation methods give rather different 
results in terms of flow (4 large bubbles) and all of them are for the L1 norm (3 of them – for 
the angle of attack as fixed parameter and one – for the half-angle as fixed parameter). This 
also may mean that some approximation methods are not suitable in this case. 

• 3 cases for sonicFoam the applied approximation methods give rather different results 
in terms of flow (3 large bubbles) and all of them are for the L1 norm. Moreover, for the 
sonicFoam solver, this corresponds to the following situations: 

1. Fixed input parameter – Mach number, half-angle – 10°, angle of attack – 5°. 
2. Fixed input parameter – half-angle, Mach number – 5, angle of attack – 5°. 
3. Fixed input parameter – angle of attack, Mach number – 7, half-angle – 20°. 
The first two cases correspond to an already discovered problem by visualizing the 

approximating curves. The third case is typical for other computational experiments and may 
indicate the need for an additional series of experiments for intermediate values of the 
corresponding parameters in order to clarify the nature of the dependence and, possibly, to 
correct the list of types of approximating curves for sonicFoam solver. 

6. Conclusion 
The paper considers the problem of evaluating the state of a generalized computational 

experiment and the methods for construct visual maps of a GCE it visual analysis. An 
approach is proposed to construct visual maps of GCE based on the sequential applying of 
two methods: visualization of a series of dependencies of the output simulation parameters 
on the input ones for a given set of approximating functions and visualization of 
approximation parameters for different value ranges of the input parameters with different 
layout methods. 

Due to the use of the proposed construct visual maps methods, it was been possible to 
identify experiments that have signs of errors as well as the value ranges of the input 
parameters for which it is advisable to conduct additional experiments for intermediate 
values. These circumstances make it possible to correct the further plan of conducting 
computational experiments. 

In combination with other methods for verifying GCE data [12], the presented methods 
can be of great help to researchers in planning and performing computational experiments. 



Their software implementation will allow creating a reliable and efficient visualization tool 
that can be used in a wide range GCEs. 

It should also be noted that application of the above visual map constructing methods 
could only be possible with a sufficient number of already performed computational 
experiments within a GCE, since to construct the approximating curves, at least 2 points are 
required with a fixed input parameter. 
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